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Abstract

The molecular characterization of tumors now informs clinical cancer care for many patients. 

This advent of molecular oncology is driven by the expanding number of therapeutic biomarkers 

that can predict sensitivity to both approved and investigational agents. Beyond its role in 

driving clinical trial enrollments and guiding therapy in individual patients, large-scale clinical 

genomics in oncology also represents a rapidly expanding research resource for translational 

scientific discovery. Here, we review the progress, opportunities, and challenges of scientific 

and translational discovery from prospective clinical genomic screening programs now routinely 

conducted in cancer patients.

Introduction

There is widespread enthusiasm for prospective tumor sequencing to guide therapy selection 

in patients with cancer1–3. Yet, the utility of clinical sequencing in oncology beyond the 

cancer types in which it is a standard of care has been much debated. Indeed, the number 

of genomic alterations clinically validated as predictive biomarkers of drug response is 

relatively small when compared to the number of all mutant genes implicated in cancer4–9. 

Consequently, simply expanding the adoption of clinical genomics is unlikely to address 
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the unmet needs for the majority of cancer patients given the current milieu of available 

therapies. Clinical sequencing has therefore begun to inform other aspects of oncology care. 

An emerging lesson from clinical cancer genomics, defined herein as the prospective clinical 

sequencing of tumor specimens to guide treatment decisions for active disease, is that these 

initiatives are generating large-scale data resources that can also be leveraged for scientific 

discovery across patients, especially when integrated with clinical annotation and treatment 

data. Here, we review progress in such efforts to uncover fundamental scientific discoveries 

that ultimately feed the clinical enterprise. We also review the unique challenges posed by 

this new scientific resource and strategies to overcome them to facilitate rigorous, robust, 

and reproducible translational science.

Evolution of genomic testing

Next-generation sequencing has become the foundational technology for modern clinical 

diagnostic testing in oncology, with several laboratory-developed tests recently achieving 

FDA recognition10,11. NGS testing has become standard of care in many cancer types as a 

method to identify therapeutically actionable alterations in tumor DNA. Most FDA-approved 

and/or standard of care biomarker-drug associations are disease-specific and are designed 

to capture all oncogenic mutations in a gene (such as those in BRCA1/2, IDH1, KIT) 

or be mutant allele-specific (BRAF V600E, FGFR3 R248C, S249C etc.) or alteration 

type-specific (ERBB2 amplifications, ALK fusions)2. Newer tumor-agnostic indications are 

emerging with the approval of immune checkpoint blockade (ICB) therapy in cancers with 

microsatellite instability (MSI)12,13 and larotrectinib in solid tumors with NTRK fusions14. 

Testing can also identify patients unlikely to respond to certain therapies, as in the case 

of KRAS mutations and cetuximab in metastatic colorectal cancers15. Ultimately, given 

the current class of therapeutic options available, larger next-generation sequencing panels 

can (with notable exceptions discussed below) detect the majority of relevant genomic 

biomarkers across a range of abnormality types more efficiently than can conventional 

single-gene testing while also capturing many potentially emerging associations.

The merits and technical aspects of different clinical sequencing tests in oncology have 

been reviewed elsewhere1,16–19. The most broadly used strategy by both academic and 

commercial laboratories has been targeted gene panels for bulk tumor tissue DNA 

sequencing20–22. These efforts have sought to maximize applicability in the patient 

population, uptake, and cost effectiveness while leveraging assay designs that balance 

competing factors in a manner consistent with community standards and best practices23–25 

(Box 1). This has necessarily limited the utility of clinical sequencing data for pure 

discovery (Fig. 1). Multiple cross-cutting forces shape these design choices, including 

the 1) regulatory approval process, 2) evolving landscape of financial reimbursement, 3) 

size of the intended patient population, 4) clinical volume at treating centers, 5) breadth 

of clinical intent, 6) consent structure and complexity, and 7) institution-specific issues 

involved in operationalizing clinical sequencing as a routine test in a long-established 

clinical cancer care workflow. While our focus here is DNA and tissue-based clinical 

genomics in oncology, many of these issues and a host of new challenges must also be 

overcome for next-generation testing of circulating tumor-derived cell-free DNA (cfDNA), 

which is discussed elsewhere26.
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As the clinical scope and intent of prospective sequencing in oncology is fundamentally 

different from discovery-driven retrospective research sequencing, targeted sequencing 

remains the methodology of greatest uptake. This is because, given the current treatment 

landscape in oncology, the majority of therapeutically relevant variants exist in a relatively 

small subset of all genes. Indeed, the most systematic effort to date to harmonize knowledge 

about cancer-associated mutations included 3437 unique variants across 357 diseases 

and 791 drug associations, yet encompassed just 415 genes27. Consequently, if the goal 

were to match patients to one of the current class of approved or investigational agents, 

broader scale sequencing such as whole-exome (WES) or genome sequencing (WGS) 

may provide limited increase in clinical benefit when compared to carefully designed 

large-panel targeted sequencing assays16. In fact, the detection of cryptic oncogenic events 

such as promoter mutations or exon skipping28,29, broader allele-specific DNA copy 

number30, and microsatellite instability31 can be achieved without the reduced sensitivity 

associated with lower coverage WES or WGS. Nevertheless, areas for which WES and 

WGS have potentially greater clinical utility due to the more comprehensive sequencing of 

passenger mutations are the identification of key mutational and genomic signatures such 

as homologous recombination deficiency32,33 as well as the identification of neoantigens, 

discrete subclones, and unexpected mechanisms of acquired resistance to therapy. As 

such, many clinical implementations of WES, WGS, and multimodality DNA and RNA 

sequencing exist33–40.

Therefore, despite the value of continued larger-panel targeted clinical sequencing, the drift 

toward clinical whole-genome sequencing (WGS) is likely inevitable. The development of 

new classes of drugs that target molecular aberrations not accessible by panel sequencing 

approaches and uniquely detected by WGS could motivate the substantial cost reductions 

and operational improvements that broad-based implementation of clinical WGS will require 

in our current health systems. The advent of clinical WGS in oncology care will likely 

result in a hybrid testing environment. WGS is likely to be used early in clinical care to 

establish a vital baseline of germline pathogenicity, somatic changes, and their actionability 

along with broader signatures of genomic changes41. Later in disease management, however, 

there will be clinical context-specific needs for far more sensitive testing (tissue or plasma-

based) for disease monitoring or to identify emerging subclonal resistance for which clinical 

WGS is suboptimal. No single test will ultimately prove sufficient to address the many 

clinical needs in oncology care and structural considerations such as the reimbursement 

landscape must adapt as the utility of such hybrid testing is proven. Notwithstanding the 

exact configuration of clinical sequencing in oncology, it has recently become clear that the 

accrual of sequencing information is driving the creation of an entirely new institutional 

research resource that can catalyze new science and discovery.

New disease biology and richer clinical interpretation

Efforts to pool together prospective sequencing data within and across institutions 

are generating increasingly larger cohorts of molecularly profiled cancer patients, with 

opportunities for discovery science. Multiple aspects of clinical sequencing data make 

it favorable for discovery compared with retrospective research data in cancer. Among 

these are 1) larger cohort sizes and greater disease diversity than exist in the retrospective 
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research domain; 2) specific quantitative attributes of clinical sequencing such as a greater 

depth of sequencing; 3) a distinct disease profile often comprised of advanced and post-

treatment metastatic disease; and 4) the potentially transformative opportunity for clinical 

data integration with maturing outcomes and therapeutic phenotypes. Indeed, the analysis 

of clinical sequencing data has demonstrated that a broad set of genomic features can 

be identified from existing testing modalities, and that when understood at a basic and 

translational level, can be fed back into the clinical enterprise to facilitate richer reporting 

and a deeper understanding of a patient’s disease. This includes, but is not limited to, novel 

mutant allele and broader driver genetic defect discovery and functional validation; disease-

specific genomics; basic mechanisms of tumor evolution; germline genetics; biomarker 

discovery and validation; mechanisms of therapeutic resistance; and immunogenomics. Each 

is catalyzed to a different degree by key aspects of clinical sequencing data (Fig. 2). 

These findings are not limited to individual genes and mutations, but broader genome- and 

disease-level (including etiological) discoveries42.

At the scale of individual alterations

One of the most attractive aspects of clinical sequencing in oncology from the perspective 

of discovery is the population sizes now being characterized. These sample sizes, albeit 

from sequencing of already established cancer-associated genes, are driving efforts to mine 

the long right tail of the frequency distribution of driver mutations across cancer patients. 

This seeks to overcome a major hurdle in effective precision oncology, of understanding the 

biological and therapeutic importance of the multitude of variants of uncertain significance 

identified from such sequencing. To this end, a variety of computational and medium- 

to high-throughput functional screening approaches, reviewed in part elsewhere2, have 

been developed to mine this long tail. These efforts are fueled in part by access to 

population-scale sequencing cohorts and have revealed increasingly rare mutations that 

provide foundations for accelerated clinical translation2,43, extend biomarkers of therapeutic 

sensitivity to a greater number of patients44–49, inform drug development50, and uncover 

new tumor biology 51,52. Indeed, emerging evidence whereby different mutations in the 

same actionable cancer gene can have distinct biochemical consequences has underscored 

additional layers of complexity in our mechanistic understanding of pathway signaling53. 

This can dictate different therapeutic strategies, as has now emerged for mutant BRAF54,55 

and MEK156. There now exists multiple decision support systems and emerging community 

standards to turn this knowledge into practice8,9,27,57,58.

There is a growing appreciation that the mere presence of an oncogenic driver mutation 

is not sufficient to convey its role in tumorigenesis, cancer progression, prognosis, or 

response to treatment. Indeed, context matters. For example the importance of serial 

evolution of oncogenic alterations has been realized in part by the ability to infer changes 

in mutant zygosity from the combination of allele-specific DNA copy number data and the 

quantitative accurate mutant allele frequencies from high depth of coverage in panel-based 

clinical sequencing data. The dosage of mutant alleles can modulate distinct molecular 

phenotypes59,60, drive tumorigenesis and disease progression61, and shape prognosis and 

therapeutic sensitivity62. Mutant oncogene dose-dependent sensitivity to targeted therapies 

has already been demonstrated in patients with AKT1 E17K mutations treated with AKT 
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inhibitors63 and in BRAF V600-mutant metastatic melanomas treated with RAF inhibitor 

therapy62. Other cryptic mechanisms of serial evolution of mutant oncogenes, such as 

cis-acting double mutations in PIK3CA, have been linked to greater therapeutic sensitivity64, 

and additional associations may emerge for new investigational therapies such as inhibitors 

of KRAS G12C65 and recently approved therapies targeting mutant oncogenes frequently 

affected by zygosity changes66. Information about zygosity, clonality, co-mutations, disease 

lineage, and germline status,among other factors, all play a vital part in understanding the 

role of any individual oncogenic variant in an affected tumor. More comprehensive panel 

clinical sequencing facilitates the feed-forward loop that propels new discoveries back into 

the clinical enterprise to enrich clinical reporting and inform cancer care.

Broader genome-wide alterations

Beyond the DNA copy number alterations that span discrete mutant loci and genes 

frequently targeted by focal amplifications or deletions, the ability to infer genome-wide 

allele-specific copy number is facilitating discoveries at the genome-scale in clinical 

sequencing data. Whole-genome doubling (WGD) 67,68, for example, is a tetraploidization 

of the tumor genome and is among the most common molecular abnormalities in cancer, 

albeit varying across tumor types and disease states69. WGD is associated with worse 

clinical outcomes both pan-cancer and in specific disease contexts70. The identification of 

WGD in clinical sequencing data can facilitate evolutionary analysis of individual patient 

tumors by revealing the order of acquisition of key alterations70–72 that can aid biological 

and clinical interpretation and may ultimately help to predict chemo-sensitivity73.

The accurate inference of mutational signatures74 in clinical genomic data can reveal aspects 

of inherited susceptibility, disease etiology and pathogenesis, environmental exposures, 

and therapeutic sensitivity. Notably among these signatures is microsatellite instability 

(MSI), which is characterized by hypermutation at repetitive sequence motifs due to DNA 

mismatch repair (MMR) dysfunction. MSI is a tumor-agnostic biomarker of sensitivity 

to ICB therapy13. The ability to infer MSI from larger-panel clinical sequencing without 

assay iteration has facilitated its rapid clinical validation31 and uptake. MSI represents 

a critical link between germline pathogenicity (MMR defects and predisposition to 

multiple cancer types75) and somatic phenotypes that can drive further consolidation of 

clinical testing by motivating simultaneous germline and somatic testing (described below). 

However, challenges remain for identifying and interpreting other mutational signatures76. 

Despite the development of algorithms for their inference from targeted sequencing data77, 

not all mutational signatures are sufficiently specific in their nucleotide pattern to be 

accurately inferred from such data or may require the detection of multiple orthogonal 

signatures to reduce false positives, even when using broader sequencing strategies78,79. 

Moreover, incorrect attribution of such mutational signatures can complicate the clinical 

interpretation of key lesions and therapeutic vulnerabilities, perhaps best typified by 

homologous recombination deficiency and PARP inhibitor use80,81. The specificity and 

accuracy of mutational signature inference, whether driven by substitutions, DNA copy 

number changes82, structural rearrangements, or the combination thereof33,78, will improve 

with the clinical use of the aforementioned WGS sequencing modalities78.
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Integrated germline and somatic reporting

With adoption of routine mutational signature and zygosity inference from matched 

germline profiling in the context of clinical sequencing, there exists an opportunity for 

fully integrated germline and somatic reporting to more completely understand disease 

pathogenesis and inform treatment. Such an approach may ultimately go beyond addressing 

ambiguities regarding the origin of somatic phenotypes, but define a more comprehensive 

view of disease as arising from the interaction of heritable and somatic factors. This 

shift toward integrated germline-somatic reporting is motivated in part by the rate at 

which pathogenic variants areidentified from broad-based clinical genomic profiling in 

both unselected patient cohorts and those with cancer37,83–87. Placing germline pathogenic 

variants into their somatic context, be it their tumor-specific zygosity or association with 

broader somatic mutational signatures, is increasingly important to guide the interpretation 

of their biological significance. Indeed, there is emerging evidence that zygosity changes 

that accompany germline pathogenic variants in even classical cancer predisposition genes 

are variable depending on cancer type, and may reflect differences in subsequent somatic 

mutational signatures of that lesion and even therapy response32.

Such discovery-based science at the intersection of germline and somatic cancer genetics 

is revealing new complexities in the interpretation of individual variants (Box 2). These 

complexities are therapeutically relevant today, such as in the case of a cancer patient found 

to harbor a pathogenic variant in a MMR gene but whose tumor lacks MSI and therefore 

would not be predicted sensitive to ICB therapy12,13. Richer clinical reporting could 

streamline testing for patients and inform multiple aspects of clinical care; 88, however, 

to our knowledge routine fully integrated clinical reporting is not presently performed at 

scale. This approach remains complicated by privacy considerations, cost concerns, and 

the complexity of incidental findings89, which have potential consequences for genetic 

counseling90 and triggering cascades of subsequent care of uncertain value91. These are 

complex and both labor- and expertise-intensive endeavours92 that require substantial 

infrastructure and investment - likely explaining, at least in part, the prevalence of tumor-

only sequencing. Addressing the complexities for integrated germline and somatic reporting 

is urgent as the community is already seeking to incorporate somatic features into the 

classification of germline variants of uncertain significance93.

Prospective immunogenomics

A perhaps surprising area of innovation for larger-panel clinical sequencing has 

been immunogenomics. Principle among these advances is the routine calculation 

of tumor-intrinsic biomarkers of response to ICB therapy such as tumor mutational 

burden (TMB)94–97. However, TMB can be affected by tumor purity98, intratumoral 

heterogeneity99, disease subtype100, mutational signatures101–103, and from the perspective 

of clinical genomics, panel size and content104–106. Overall, considerable work remains to 

refine the clinical utility of TMB107 and to better understand both the factors by which it co-

varies and how it affects and confounds the identification of single-gene or pathway-based 

biomarkers of (ICB) therapy.
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As an adjunct to TMB, other factors essential for modern immunogenomics can be readily 

inferred from the current generation of clinical sequencing assays such as the genotypes 

of human leukocyte antigen genes (HLA-A, B, and C). These genes encode MHC class I 

proteins that present intracellular peptides on the cell surface to the immune system. Overall, 

the diversity and evolutionary divergence of the HLA class I repertoire has been associated 

with differences in the efficacy of ICB therapy108,109. In tumors, somatic mutations in these 

genes and related antigen processing machinery have been correlated with immune cell 

infiltration110, and somatic loss-of-heterozygosity (LOH) of the HLA locus is associated 

with high subclonal neoantigen burden and is a mechanism of immune escape111,112. 

Notably, accurate HLA class I genotyping 113,114 and somatic HLA zygosity inference 

requires patient-matched germline DNA sequencing, reinforcing its importance as part of the 

routine clinical workflow. This can further consolidate clinical testing modalities and inform 

novel enrichment and accrual strategies for the next generation of clinical trials testing 

HLA-specific neoantigen-directed cancer vaccines among others115,116.

The inclusion of HLA class I genes in paired tumor and matched germline clinical 

sequencing also facilitates neoantigen discovery117. Tumor-specific neoantigens result from 

somatic mutations and are foreign peptides absent from normal tissue. Clonal neoantigen 

burden is a biomarker of response to ICB therapy99. Looking beyond just the burden of 

neoantigens, fitness models have been proposed to measure neoantigen quality, which is 

also associated with longer term survival in pancreatic cancer patients118,119. Personalized 

vaccine strategies are being developed to target neoantigens that autologously bind to 

HLA genes within cancer patients120–123. However, targeted clinical sequencing can only 

identify a small fraction of the potential neoantigens present in individual tumors. As 

such, WES has been primarily used to identify and prioritize putative neoantigens and 

vaccine targets via in silico approaches, often in conjunction with RNA sequencing to assess 

peptide expression121,123. By contrast, other neoantigen-based strategies can directly benefit 

from the current generation of largely targeted sequencing in oncology. One such strategy 

is leveraging shared or ‘public’ neoantigens that bind common HLA subtypes and can 

potentially benefit a larger population of patients and avoid much of the complexity and cost 

of developing personalized therapies from private neoantigens124–126.

Early detection and disease classification

Clinical genomics has proven enormously valuable for identifying patients with disease 

states that inform screening and early detection for other malignancies. For instance, 

prospective clinical sequencing can identify patients with solid tumors as well as clonal 

hematopoiesis (CH)127. CH is characterized by somatic mutations in hematopoietic stem and 

progenitor cells in patients without hematologic disease128,129. CH mutations typically arise 

in genes associated with myeloid disease and other malignancies and therefore are readily 

detected in prospective sequencing of cancer patients, especially those for whom matched 

germline sequencing is performed at high depth of coverage. As cancer patients with CH 

are at greater risk of developing hematologic malignancies such as AML and MDS127, it 

may serve as an increasingly important facet of early detection and screening130,131, with 

future clinical validation particularly dependent on large-scale clinical sequencing initiatives. 

Finally, broader efforts exist to integrate multiple types of alterations that can be readily 
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inferred from targeted clinical sequencing data of individual patient tumors, coupled to 

novel computational methods development including those in machine learning. One such 

example is the development of algorithms to predict tissue of origin for cancers from clinical 

genomics data alone132 that were themselves trained on large-scale clinical sequencing data. 

Such point-of-care decision support can serve as a useful adjunct to conventional histologic 

diagnosis and is another example of the value of discovery in clinical sequencing feeding 

back into the clinical enterprise, in this case potentially providing integrated pathological 

diagnoses.

Overall, the breadth of these discovery efforts emphasize that, when properly controlling for 

the effect of prior therapy, even foundational aspects of tumorigenesis and cancer biology 

can be revealed from the sequencing of largely advanced and metastatic specimens.

Implementation and downstream uses

As clinical genomics has emerged as standard-of-care testing for many indications, this has 

led to a proliferation of different assays at major academic medical centers, which has both 

benefits and drawbacks. Complexities include the substantial and ongoing investments in 

assay development, clinical validation, and infrastructure as well as the variability in test 

content and capability that can complicate care, reimbursement, and trial accrual and design. 

By contrast, advantages include control over gene panel content, access to deep clinical 

annotation, sample and assay quality assessment data to drive iterative assay improvement 

(of diminishing returns as the feasibility of broad-based clinical WGS grows), customizable 

integration of reports into the electronic medical record, a unified platform for clinical use 

and discovery, and long-term cost effectiveness16. Test proliferation at academic medical 

centers also indirectly fosters innovation for the broader field that may not otherwise 

happen, through responses to institution-specific needs. These advantages are often seen 

only with economies of scale, so the field must democratize the expertise and benefits from 

such test development to the broader clinical oncology community. This could dovetail with 

other models that seek to build partnership with the pharmaceutical industry and government 

with a network of centers to facilitate information, data, and resource exchange133.

Translational science in clinical trials

Target-driven clinical trials were an early crucible through which key lessons were learned 

for the implementation and use of prospective sequencing in oncology2. Challenges abound 

for the translational science incorporated into such trials. Significant variability in clinical 

sequencing test capabilities exist as discussed above between sites enrolling patients in 

multi-center trials. This effectively limits the sample size for correlative genomics to only 

those sites with sufficient capabilities unless trial agreements break down the barriers typical 

of competitive academic sites to facilitate the transfer of materials for study. In addition, the 

desire in many target-driven trials for central tissue testing to support companion diagnostic 

test development that may be redundant with the activities of the individual sites can 

further limit high-quality genomic studies by depleting key tissue resources. Many of these 

issues can be overcome with cross-laboratory concordance testing134,135 and compliance 

with guidelines and standards for next-generation sequencing23,25,136. Also playing an 
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important role is community-wide harmonization of key biological features across various 

clinical sequencing assays, such as recent efforts for tumor mutational burden105–107. While 

challenging, these efforts are likely more straightforward than harmonizing the real-time 

interpretation of candidate enrolling and sensitizing lesions27 across sites without some 

degree of central review or formal FDA recognition137

As biomarker hypotheses and enrichment strategies to guide trial enrollment become more 

complex, some enrolling sites and institutional tests will have the necessary capabilities, 

while others may not. These differences in testing capability may in turn influence accrual, 

trial design and availability, and ultimately drug approval. Even if such challenges were 

overcome, many key scientific and clinical questions remain that are difficult to address in 

the setting of a target-driven clinical trial, where the populations are necessarily small and 

uniform molecular profiling is absent. This has led to tremendous enthusiasm for real-world 

data and evidence to supplement the lessons learned from clinical trials138,139. Prospective 

studies using real-world data, defined here as population-level clinical and molecular data 

acquired outside the context of a clinical trial, provide an avenue to address such questions, 

but these will require careful clinical data homogenization, the selection of adequate control 

populations, and more to ensure that clinical practice realities do not limit robust results.

Retrospective biomarker analyses

The greatest value of clinical sequencing for discovery is arguably the real-time integration 

with clinical data including maturing outcomes and treatment phenotypes. This permits 

both an initial discovery and its clinical cross-validation to take place at the same time 

and in the same cohort, which is a strategy leveraged for many of the aforementioned 

discoveries. Clinical and treatment annotation will be of increasing importance for key 

retrospective biomarker questions that are impossible to answer in the setting of a clinical 

trial. However, a multitude of challenges complicate rigorous retrospective analyses, which 

can risk erroneous clinical findings (Fig. 3a).

Foremost among challenges is the lack of rigorously validated quantitative treatment 

outcomes. Overall survival (OS) measured from the start of treatment is justifiably the 

established and preferred endpoint for demonstrating clinical benefit to a therapy of interest 

in clinical trials. However, to date most patients for whom clinical sequencing is obtained 

are not part of a therapeutic trial enrolling homogenous patient populations who then 

receive highly standardized therapy, the response to which could then be measured in 

a standardized and quantitative manner. Moreover, an increasing number of retrospective 

biomarker analyses are being performed pan-cancer, driven in part by the recent excitement 

around tissue-agnostic biomarkers of therapeutic sensitivity13,14. Yet, multiple potential 

confounding factors can plague different clinical endpoints in retrospectively collected 

treatment data in a pan-cancer cohort, preventing accurate assessment of clinical benefit 

from a given line of therapy. This is especially true of the preferred OS endpoint that, 

when analyzed pan-cancer, does not account for the often-profound prognostic differences 

between individual cancer types.

First, initial efforts to incorporate clinical genomics into active cancer care focused on the 

most advanced and treatment-refractory patients in need of novel therapeutic strategies who 
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had the poorest prognosis. Over time, as practice patterns change with the approval of 

biomarker-driven therapies in earlier settings, clinical sequencing has expanded to patients 

with earlier-stage disease. This can lead to ‘prognostic drift’ in a cohort that accrues 

in real-time that, if not correctly adjusted for, can produce spurious associations with 

outcome (Fig. 3b). Second, prognosis between any two cancer types can vary widely and 

independently of the candidate biomarker of interest (Fig. 3c). If a cancer type of longer 

natural history also has an alteration rate of a candidate biomarker that is significantly 

greater than a poorer prognosis cancer type, simple outcome analyses using a clinical 

endpoint like OS from the start of therapy may arrive at the wrong conclusion about the 

effect of the sensitizing biomarker. Third, several key genomic alterations being investigated 

as therapeutic biomarkers can alone distinguish prognostically distinct subsets within 

individual cancer types, as is the case with BRCA1/2 mutations in ovarian cancers140. 

Consequently, any analysis of such a biomarker using OS will inevitably be confounded by 

the favorable prognosis its presence bestows on the carrier and fail to discriminate between 

survival differences driven by underlying biology versus therapeutic intervention. Fourth, 

OS from the start of therapy can be confounded by both therapies received concurrently 

with, and following the cessation of a given line of treatment (Fig. 3d). The confounding 

effect of concurrent and subsequent therapy is of particular concern in highly heterogeneous 

real-world cohorts such as those generated by clinical sequencing in oncology. For these 

reasons, both routine clinical trial practice and international health authority guidance 

suggests that OS should only be utilized as the primary endpoint for comparative analyses 

in large, rigorously designed, adequately powered, and highly controlled randomized phase 

III trials that enroll homogenous patient populations who then receive highly standardized 

therapy141–143.

Retrospective therapeutic biomarker analyses must therefore leverage one of multiple 

potentially suboptimal alternative endpoints that can be subjective or difficult to standardize. 

Some are more conservative or straightforward to curate than others, such as time to 

treatment failure or progression-free survival, which may be less prone to confounding in 

the real-world setting of clinical sequencing in cancer. However, they too can fail to reflect 

desired therapeutic effects. Time to treatment failure cannot quantify benefit for agents given 

for fixed durations like platinum-based chemotherapies or anti-CTLA-4 blockade, while 

progression free survival can be difficult to determine without the regular interval scans 

and radiographic measurements that standardize determination of disease progression on the 

majority of clinical trials.

Ultimately, rigorous and independently validated biomarkers of sensitivity to individual 

therapeutic agents are urgently needed to guide effective cancer care. However, false 

signals can lead the biomedical community astray at high cost in time and resources for 

institutions and patients. So, despite the exploratory power of these cohorts and data, key 

biomarker questions can likely only be tested robustly in a rigorously controlled large-scale 

prospective clinical trial where all of the aforementioned confounding clinical variables can 

be annotated, controlled, and duly adjusted for. For others, recognizing that no real-world 

data approach is perfect can motivate policies that require independent cohorts of clinical 

cross-validation for individual findings and a focus on more conservative endpoints, which 

mirrors best practices in the field for signal-seeking clinical trials.
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Tragedy of the commons

Atypical of research data, clinical sequencing datasets obtained during the course of 

oncology care are often not siloed in any single research laboratory and therefore can 

represent catalyzing institutional resources for discovery if shared broadly. Nevertheless, 

challenges abound. It is unclear how proper attribution and credit can be ensured for data 

producers, who may be part of the clinical operational enterprise distinct from the research 

teams leveraging this data. Nor is it clear how to ensure privacy protections for cohorts 

composed, in part, of still-active cancer patients, while also meeting the obligations to 

the broader research community for the public deposition of sensitive data types such as 

raw sequencing data, germline variant calls, and others. It remains difficult to mediate the 

use of potentially encumbered or embargoed data, for instance from clinical trials with 

existing agreements governing the use of data prior to the public reporting of clinical 

efficacy data. These issues are particularly fraught when it comes to clinical annotation 

and treatment phenotypes. Navigating the issues around clinical data for integration with 

molecular information requires buy-in from key stakeholders from the individual treating 

physicians to the larger research enterprise and potential outside entities such as clinical trial 

sponsors, among others. Cross-institutional initiatives such as AACR GENIE144 are seeking 

new ways to address these issues while aggregating clinical sequencing data from many 

sources for broader utilization145.

At our academic cancer center, we have generated and shared clinical sequencing data from 

a prospective tumor profiling initiative for tens of thousands of tumors over the last several 

years to facilitate its use. All analyzed molecular data to date is shared via the cBioPortal for 

Cancer Genomics146,147. Raw data is available on institutional computing resources and is 

accessible to any research team at the institution via an IRB-approved process codified in the 

protocol to which all patients consent for clinical sequencing. These resources are updated 

nightly to ensure broadest availability and use. Such resources, however, require nimble 

governance that ensures open, broad, and rigorous utilization while assisting researchers 

to adjudicate overlapping uses. Questions have arisen such as how best to navigate two 

different research groups at the institution asking the same question of the same largely 

unpublished data, or how to handle situations when two research groups, leveraging the 

same institutional data resource but using slightly different analytical approaches, arrive at 

different conclusions. Ultimately an open dialogue among the key operational, clinical, 

and scientific stakeholders is necessary to ensure best use of these newer generations 

of institutional research resources. Our community must also ensure rigorous meta-data 

accompanies the publication of clinical sequencing and clinical annotation data to ensure 

proper use by others in the biomedical community encountering these data types for the first 

time.

Ultimately, unfettered data access and sharing is critical for the biomedical enterprise, 

catalyzing a greater body of science than can be achieved by any one group. However, 

such sharing raises the risk of scientific overlap and even misinterpretation that can lead 

to incorrect findings and stifle progress in clinical genomics. Responsibility ultimately lies 

both with data producers and users to ensure shared data are analyzed in a manner that is 
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rigorous, well-documented, and trustworthy to ensure progress in improving human health 

and oncology.

Outlook

Significant progress remains to be made in extending the clinical benefit of prospective 

molecular characterization to more cancer patients. In parallel, molecular profiling initiatives 

will continue to grow as an increasing component of oncology care - especially as entirely 

new modalities of characterization, such as cell-free DNA and single-cell sequencing, 

mature toward clinical utilization148–151. While each of these new technologies will come 

with their own regulatory, ethical, and practical considerations and complexities, together 

they represent an unprecedented opportunity for scientific discovery. Our health systems 

must therefore mature to support this degree of routine molecular profiling, enable seamless 

and structured data sharing, and ensure real-time integration with deep clinical phenotyping. 

This will accelerate the discovery of clinical phenotypes associated with alterations in 

the cancer genome and drive expanded use of real-world evidence to aid in clinical and 

regulatory decision making.
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Box 1: The operational equipoise of modern clinical sequencing in 
oncology.

Most active cancer patients for whom prospective DNA sequencing is performed to 

guide treatment decisions receive some form of large-panel targeted sequencing. Assay 

design23–25 choices regarding panel size and content, depth of sequencing, and specimen 

type balance competing factors which impact the value of the resulting data for biological 

and translational discovery science. Key issues and subsequent considerations include:

Panel size and content

• One larger panel, solid tumor versus hematological panels, multiple disease-

specific panels?

– Choice depends on breadth of utility

– Can affect the complexity of testing and operations

– Has implications for clinical and scientific discoveries

– Ease of integrative analysis increased with a single test

• Genes and non-genic content

– Standards of clinical significance and actionability can vary by 

institution

– Adaptability to unanticipated alterations, new discoveries, and 

advances in treatment easier with a larger genomic footprint

– Identification of complex alterations, mutational signatures, and 

other molecular phenotypes with clinical relevance

Depth of sequencing

• At fixed cost, breadth and depth (sensitivity) of sequencing are inversely 

correlated

• High depth valuable for sensitivity in suboptimal clinical specimens of low 

tumor content

– Early detection and identification of mechanisms of resistance152

– Quantitative accuracy

– Clonal hematopoiesis (CH) detection

– Inference of clonality and zygosity

Matched germline sequencing

• Germline pathogenic variant discovery

– Simplifies clinical testing for many cancer patients153 when 

combined with consent and counseling infrastructure.

• Determines origins of oncogenic events between somatic, germline, or CH154.
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• CH detection and screening for early detection of myeloid disease127

• The direct inference of somatic zygosity changes32

Community standards and guidelines in clinical sequencing

• DNA requirements

• Library qualification and quantification requirements

• Proficiency testing: inter-laboratory test performance

• Validation: use of reference materials and identification of limits of detection

• Quality control metrics: depth and uniformity of coverage, quality scores for 

base calling and alignment, allelic read percentage, strand and GC bias

Donoghue et al. Page 20

Nat Cancer. Author manuscript; available in PMC 2022 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2: Unified clinical germline and somatic reporting.

Concurrent clinical evaluation of germline pathogenicity and somatic tumor genomics 

from prospective clinical sequencing will reveal new complexities that affect our ability 

to interpret the significance of germline findings.

The hitchhiker effect

• Knowing the target. Is somatic LOH targeting the chromosomal locus 

spanning a germline pathogenic variant selecting for its biallelic inactivation, 

or does this reflect the selective pressure for the loss of a proximal 

somatically mutant tumor suppressor gene elsewhere on the same 

chromosome?

One or both alleles?

• Is a somatic truncating mutation in a tumor suppressor gene not accompanied 

by a second hit truly heterozygous? Or does this represent the second hit in 

a carrier of a germline pathogenic allele in the same gene not simultaneously 

reported?

The significance of apparent dispensability

• Widespread genomic losses typical of advanced cancer genomes can delete 

the germline pathogenic allele somatically. Was the germline event incidental 

to tumor development? Or initially essential, but now dispensable to advanced 

disease?

Donoghue et al. Page 21

Nat Cancer. Author manuscript; available in PMC 2022 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: Balancing accessibility, utility, and discovery in clinical genomics.
At present, there is a trade-off between cost, accessibility, and the opportunity for novel 

discovery afforded by different clinical sequencing platforms. The model depicts the 

current inverse relationship between accessibility and cost. As the cost (x-axis) of different 

sequencing strategies increases (driven by the size of the genomic footprint and depth of 

sequencing) accessibility in the community decreases (y-axis). The most common modalities 

of sequencing are labeled as are examples of the additional types of information enabled 

possible by adopting the indicated sequencing strategy. The discovery potential of a given 

strategy typically tracks with cost (bottom). At one end of the spectrum, small gene panels 

have the lowest cost but have limited discovery potential. In contrast, at the other end of 

the spectrum, WGS has both the highest cost and greatest discovery potential. WES, whole-

exome sequencing; WGS, whole-genome sequencing; CNAs, copy number alterations.
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Fig. 2: Facets of clinical sequencing that drive translational discovery science.
Critical aspects of clinical sequencing that can impact various discovery efforts are its 1) 

population-scale, 2) use of matched germline sequencing, 3) depth of sequencing, and 4) 

genomic content (see axes). Each of these facets can also drive different types of discoveries. 

The relative importance of each axis is displayed for various analysis types, the further 

away from the center the greater the importance of that particular axis is to the analysis in 

question.
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Fig. 3: The known unknowns and potential pitfalls of retrospective biomarker analyses.
a) Various potential confounding factors that complicate the current generation of rigorous 

retrospective biomarker analyses using real-world clinical sequencing data in oncology. b) 
Over time, as clinical practice patterns change and the patient population for which clinical 

sequencing is routinely performed expands beyond late-stage and treatment refractory 

disease, the prognostic composition of the cohort will shift, leading to potentially spurious 

associations with outcome. c) Biomarker analysis pan-cancer can fail to discriminate 

between survival differences driven by underlying biology versus therapeutic intervention 

when affected cancer types have very different natural histories or the biomarker itself 

bestows favorable or worse prognosis. d) The effect of subsequent lines of therapy can 

confound key clinical endpoints in clinical sequencing cohorts composed of patients with 

heterogeneously administered therapies. TTF, time to treatment failure; OS, overall survival.
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